Dynamic Programming

Fibonacci
Coin counting
Longest
common
subsequence
Subset sum
Summary

Robin Visser

IOI Training Camp
University of Cape Town

3 December 2016

Overview

Dynamic
Programming
Robin Visser

Background
Examples
Fibonacci
Coin counting
Longest
common
subsequence
Subset sum
Summary
(1) Background
(2) Examples

Fibonacci
Coin counting
Longest common subsequence Subset sum
(3) Summary

Background

- Dynamic programming is a programming technique which separates a problem into simpler sub-problems.

Background

- Dynamic programming is a programming technique which separates a problem into simpler sub-problems.
- Each sub-problem is calculated just once. When the same sub-problem is required to be calculated again, the stored solution is used instead of recomputing the sub-problem.

Background

- Dynamic programming is a programming technique which separates a problem into simpler sub-problems.
- Each sub-problem is calculated just once. When the same sub-problem is required to be calculated again, the stored solution is used instead of recomputing the sub-problem.
- It is a frequently used technique in competitions and can often reduce the time complexity of problems from exponential to polynomial.

Background

- Dynamic programming is a programming technique which separates a problem into simpler sub-problems.
- Each sub-problem is calculated just once. When the same sub-problem is required to be calculated again, the stored solution is used instead of recomputing the sub-problem.
- It is a frequently used technique in competitions and can often reduce the time complexity of problems from exponential to polynomial.

Example:

Background

- Dynamic programming is a programming technique which separates a problem into simpler sub-problems.
- Each sub-problem is calculated just once. When the same sub-problem is required to be calculated again, the stored solution is used instead of recomputing the sub-problem.
- It is a frequently used technique in competitions and can often reduce the time complexity of problems from exponential to polynomial.

Example: What is the value of $1+3+9+2+4+8+10$

Background

- Dynamic programming is a programming technique which separates a problem into simpler sub-problems.
- Each sub-problem is calculated just once. When the same sub-problem is required to be calculated again, the stored solution is used instead of recomputing the sub-problem.
- It is a frequently used technique in competitions and can often reduce the time complexity of problems from exponential to polynomial.

Example: What is the value of $1+3+9+2+4+8+10+1$

Fibonacci sequence

Dynamic
Programming
Robin Visser

Background
Examples
Fibonacci
Coin counting
Longest
common
subsequence
Subset sum
Summary

Problem

Calculate the nth Fibonacci number. (The Fibonacci sequence is generated as $F_{0}=0, F_{1}=1, F_{n}=F_{n-1}+F_{n-2}$

Fibonacci sequence

Dynamic
Programming
Robin Visser

Background
Exampies
Fibonacci
Coin counting
Longest
common subsequence
Subset sum
Summary

Problem

Calculate the nth Fibonacci number. (The Fibonacci sequence is generated as $F_{0}=0, F_{1}=1, F_{n}=F_{n-1}+F_{n-2}$

- One can easily code a recursive solution

Fibonacci sequence

Dynamic
Programming
Robin Visser

Background
Exampies
Fibonacci
Coin counting
Longest
common
subsequence
Subset sum
Summary

Problem

Calculate the nth Fibonacci number. (The Fibonacci sequence is generated as $F_{0}=0, F_{1}=1, F_{n}=F_{n-1}+F_{n-2}$

- One can easily code a recursive solution
def fibonacci(n):
if n <= 1: return n
return fibonacci(n-1) + fibonacci(n-2)

Fibonacci sequence

Problem

Calculate the nth Fibonacci number. (The Fibonacci sequence is generated as $F_{0}=0, F_{1}=1, F_{n}=F_{n-1}+F_{n-2}$

- One can easily code a recursive solution
def fibonacci(n):
if n <= 1: return n
return fibonacci(n-1) + fibonacci(n-2)
- This will take exponential time, therefore very slow! It would take about 4 trillion years to calculate F_{100} (longer than the age of the universe)

Fibonacci sequence

- Clearly, a better approach is required.

Background
Examples
Fibonacci
Coin counting
Longest
common
subsequence
Subset sum
Summary

Fibonacci sequence

Background
Examples
Fibonacci
Coin counting
Longest
common
subsequence
Subset sum
Summary

- Clearly, a better approach is required.
- Instead of recomputing the same values, we store them in memory. This is called memoisation.

Fibonacci sequence

- Clearly, a better approach is required.
- Instead of recomputing the same values, we store them in memory. This is called memoisation.
- If our result has been already computed, we simply retrieve the solution from memory instead of recomputing the result.

Fibonacci sequence

- Clearly, a better approach is required.
- Instead of recomputing the same values, we store them in memory. This is called memoisation.
- If our result has been already computed, we simply retrieve the solution from memory instead of recomputing the result.

```
def fibonacci(n):
    if memo[n] >= 0: return memo[n]
    if n <= 1: return n
    memo[n] = fibonacci(n-1) + fibonacci(n-2)
    return memo[n]
```


Fibonacci sequence

- This already optimises the problem down to linear time.

Fibonacci sequence

Fibonacci

- This already optimises the problem down to linear time.
- We still require $\mathrm{O}(n)$ memory though.

Fibonacci sequence

- This already optimises the problem down to linear time.
- We still require $\mathrm{O}(n)$ memory though.
- A bottom-up approach can reduce memory usage to constant space

Fibonacci sequence

- This already optimises the problem down to linear time.
- We still require $\mathrm{O}(n)$ memory though.
- A bottom-up approach can reduce memory usage to constant space

```
def fibonacci(n):
    if n == 0: return 0
    prevFib, curFib = 0, 1
    for i in range(n-1):
            newFib = prevFib + curFib
        prevFib, curFib = curFib, newFib
    return curFib
```


Fibonacci sequence

- This approach requires only $\mathrm{O}(n)$ time and $\mathrm{O}(1)$ memory.

Fibonacci sequence

- This approach requires only $\mathrm{O}(n)$ time and $\mathrm{O}(1)$ memory.
- Usually takes less time in practice due to function call overhead.

Fibonacci sequence

- This approach requires only $\mathrm{O}(n)$ time and $\mathrm{O}(1)$ memory.
- Usually takes less time in practice due to function call overhead.
- In general, there are three things to consider:

Fibonacci sequence

- This approach requires only $\mathrm{O}(n)$ time and $\mathrm{O}(1)$ memory.
- Usually takes less time in practice due to function call overhead.
- In general, there are three things to consider:
- State space

Fibonacci sequence

- This approach requires only $\mathrm{O}(n)$ time and $\mathrm{O}(1)$ memory.
- Usually takes less time in practice due to function call overhead.
- In general, there are three things to consider:
- State space
- Recurrence relation

Fibonacci sequence

- This approach requires only $\mathrm{O}(n)$ time and $\mathrm{O}(1)$ memory.
- Usually takes less time in practice due to function call overhead.
- In general, there are three things to consider:
- State space
- Recurrence relation
- Traversal

Fibonacci sequence

- This approach requires only $\mathrm{O}(n)$ time and $\mathrm{O}(1)$ memory.
- Usually takes less time in practice due to function call overhead.
- In general, there are three things to consider:
- State space
- Recurrence relation
- Traversal
- Both approaches have their pros and cons. Recursion with memoisation can sometimes be easier to conceptualise (don't need to worry about traversal) although the fastest solutions can often only be done as a bottom-up DP.

Coin counting

Problem

Given a set of n coins, each with value $v_{1}, v_{2}, \ldots, v_{n}$, make change to the value of M using the least amount of coins

Coin counting

Dynamic

Programming

Robin Visser

Background
Examples

Fibonacci

Coin counting
Longest
common
subsequence
Subset sum
Summary

Problem

Given a set of n coins, each with value $v_{1}, v_{2}, \ldots, v_{n}$, make change to the value of M using the least amount of coins

- Let coins $[x]$ be the optimal solution for making x change.

Coin counting

Problem

Given a set of n coins, each with value $v_{1}, v_{2}, \ldots, v_{n}$, make change to the value of M using the least amount of coins

- Let coins $[x]$ be the optimal solution for making x change.
- Note that we having the following dependency: $\operatorname{coins}[X]=1+\min \left\{\operatorname{coins}\left[X-v_{1}, X-v_{2}, \ldots, X-v_{i}\right\}\right.$ for all i where $v_{i} \leq X$.

Coin counting

Problem

Examples
Given a set of n coins, each with value $v_{1}, v_{2}, \ldots, v_{n}$, make Longest common change to the value of M using the least amount of coins

- Let coins $[x]$ be the optimal solution for making x change.
- Note that we having the following dependency: $\operatorname{coins}[X]=1+\min \left\{\operatorname{coins}\left[X-v_{1}, X-v_{2}, \ldots, X-v_{i}\right\}\right.$ for all i where $v_{i} \leq X$.
- This immediately suggests a DP approach.

Code

Dynamic
Programming
Robin Visser

Background
Examples
Fibonacci
Coin counting
Longest
common
subsequence
Subset sum
Summary

Pseudocode:

```
coins[0] = 0
for i from 1 to m:
    for j from 1 to n:
        if v[j] < i:
            coins[i] = min(coins[i], 1 + coins[i-v[j]])
return coins[m]
```


Code

Dynamic Programming

Robin Visser

Background
Examples
Fibonacci
Coin counting
Longest
common
subsequence
Subset sum
Summary

Pseudocode:

```
coins[0] = 0
for i from 1 to m:
    for j from 1 to n:
        if v[j] < i:
            coins[i] = min(coins[i], 1 + coins[i-v[j]])
return coins[m]
```

- Notice that to calculate some value of coins $[x]$ requires $\mathrm{O}(n)$ time.

Code

Dynamic Programming

Robin Visser

Background
Exampies
Fibonacci
Coin counting
Longest
common
subsequence
Subset sum
Summary

Pseudocode:

```
coins[0] = 0
for i from 1 to m:
    for j from 1 to n:
        if v[j] < i:
            coins[i] = min(coins[i], 1 + coins[i-v[j]])
return coins[m]
```

- Notice that to calculate some value of coins $[x]$ requires $\mathrm{O}(n)$ time.
- Final algorithm hences run in $\mathrm{O}(n M)$ time. (pseudo-polynomial time)

Code

Dynamic Programming

Robin Visser

Background
Examples
Fibonacci
Coin counting
Longest
common
subsequence
Subset sum
Summary

Pseudocode:

```
coins[0] = 0
for i from 1 to m:
    for j from 1 to n:
        if v[j] < i:
            coins[i] = min(coins[i], 1 + coins[i-v[j]])
return coins[m]
```

- Notice that to calculate some value of coins $[x]$ requires $\mathrm{O}(n)$ time.
- Final algorithm hences run in $\mathrm{O}(n M)$ time. (pseudo-polynomial time)
- This is a special case of the unbounded knapsack problem (where value of each object is 1)

Longest common subsequence

Dynamic

Programming

Robin Visser

Background
Examples
Fibonacci
Coin counting
Longest
common subsequence
Subset sum
Summary

Problem

Given two strings, find the longest common subsequence.
Example: Longest common subsequence of GAC and AGCAT is $\{\mathbf{A C}, \mathbf{G C}, \mathbf{G A}\}$.

Longest common subsequence

Dynamic Programming

Robin Visser

Background
Examples
Fibonacci
Coin counting
Longest
common subsequence
Subset sum
Summary

Problem

Given two strings, find the longest common subsequence.
Example: Longest common subsequence of GAC and AGCAT is $\{\mathbf{A C}, \mathbf{G C}, \mathbf{G A}\}$.

- Can be done using a 2D dynamic programming approach.

Longest common subsequence

Problem

Given two strings, find the longest common subsequence.
Example: Longest common subsequence of GAC and AGCAT is $\{\mathbf{A C}, \mathbf{G C}, \mathbf{G A}\}$.

- Can be done using a 2D dynamic programming approach.
- Consider the LCS of prefixes of the given strings.

Algorithm

- Given two strings X and Y, let X_{i} denote the first i character of X and Y_{j} denote the first j characters of Y.

Algorithm

- Given two strings X and Y, let X_{i} denote the first i character of X and Y_{j} denote the first j characters of Y.
- Let LCS $[i][j]$ denote the LCS of X_{i} and Y_{j}.

Algorithm

- Given two strings X and Y, let X_{i} denote the first i character of X and Y_{j} denote the first j characters of Y.
- Let LCS $[i][j]$ denote the LCS of X_{i} and Y_{j}.
- We have the following relation:

Algorithm

- Given two strings X and Y, let X_{i} denote the first i character of X and Y_{j} denote the first j characters of Y.
- Let LCS $[i][j]$ denote the LCS of X_{i} and Y_{j}.
- We have the following relation:

$$
\operatorname{LCS}[i][j]= \begin{cases}0 & \text { if } i=0 \text { or } j=0 \\ \operatorname{LCS}[i-1][j-1]+1 & \text { if } x_{i}=y_{j} \\ \max (\operatorname{LCS}[i][j-1], \operatorname{LCS}[i-1][j]) & \text { if } x_{i} \neq y_{j}\end{cases}
$$

Algorithm

- Given two strings X and Y, let X_{i} denote the first i character of X and Y_{j} denote the first j characters of Y.
- Let LCS $[i][j]$ denote the LCS of X_{i} and Y_{j}.
- We have the following relation:

$$
\operatorname{LCS}[i][j]= \begin{cases}0 & \text { if } i=0 \text { or } j=0 \\ \operatorname{LCS}[i-1][j-1]+1 & \text { if } x_{i}=y_{j} \\ \max (\operatorname{LCS}[i][j-1], \operatorname{LCS}[i-1][j]) & \text { if } x_{i} \neq y_{j}\end{cases}
$$

- Algorithm runs in $\mathrm{O}(n m)$ time where n is length of X and m is length of Y.

Code

Dynamic
Programming
Robin Visser

Background
Examples
Fibonacci
Coin counting
Longest
common subsequence
Subset sum
Summary

Pseudocode:

$$
\begin{array}{ll}
\text { for i from } 0 \text { to } m: & C[i][0]=0 \\
\text { for } j \text { from } 0 \text { to } n: & C[0][j]=0
\end{array}
$$

$$
\text { for i from } 1 \text { to m: }
$$

$$
\text { for } \mathrm{j} \text { from } 1 \text { to } \mathrm{n} \text { : }
$$

$$
\text { if } X[i]=Y[j]:
$$

$$
C[i][j]=C[i-1][j-1]+1
$$

else:

$$
C[i, j]=\max (C[i][j-1], C[i-1][j])
$$

Code

Dynamic Programming

Robin Visser

Background
Examples
Fibonacci
Coin counting
Longest
common subsequence
Subset sum
Summary

Pseudocode:

$$
\begin{aligned}
& \text { for i from } 0 \text { to } m: \quad C[i][0]=0 \\
& \text { for } j \text { from } 0 \text { to } n: \quad C[0][j]=0 \\
& \text { for i from } 1 \text { to } m \text { : } \\
& \text { for } j \text { from } 1 \text { to } n \text { : } \\
& \text { if } X[i]=Y[j]: \\
& \text { C[i][j] }=C[i-1][j-1]+1 \\
& \text { else: } \\
& \quad C[i, j]=\max (C[i][j-1], C[i-1][j])
\end{aligned}
$$

- To recreate the subsequence, one can backtrack starting from $\mathrm{C}[m][n]$.

Code

Dynamic Programming

Robin Visser

Background
Examples
Fibonacci

Coin counting

Longest

common subsequence
Subset sum
Summary

Pseudocode:

$$
\begin{aligned}
& \text { for i from } 0 \text { to } m: \quad C[i][0]=0 \\
& \text { for } j \text { from } 0 \text { to } n: \quad C[0][j]=0 \\
& \text { for i from } 1 \text { to } m \text { : } \\
& \text { for } j \text { from } 1 \text { to } n \text { : } \\
& \text { if } X[i]=Y[j]: \\
& \text { C[i] }[j]=C[i-1][j-1]+1 \\
& \text { else: } \\
& \quad C[i, j]=\max (C[i][j-1], C[i-1][j])
\end{aligned}
$$

- To recreate the subsequence, one can backtrack starting from C $[m][n]$.
- This is a commonly used technique in dynamic programming to recreate the optimal state required.

Subset sum

Problem

Given a set of n integers $x_{1}, x_{2}, \ldots, x_{n}$, determine if there exists a subset whose sum is S.

Subset sum

Problem

Given a set of n integers $x_{1}, x_{2}, \ldots, x_{n}$, determine if there exists a subset whose sum is S.

- Again, a 2D state space will be used.

Subset sum

Problem

Given a set of n integers $x_{1}, x_{2}, \ldots, x_{n}$, determine if there exists a subset whose sum is S.

- Again, a 2D state space will be used.
- We define a boolean valued function $\mathrm{Q}(i, s)$ to be true iff there is a nonempty subset of x_{1}, \ldots, x_{i} which sums to s.

Algorithm

- Let A be the sum of the negative values and B the sum of the positive values.

Algorithm

- Let A be the sum of the negative values and B the sum of the positive values.
- We have the following relation:

Algorithm

- Let A be the sum of the negative values and B the sum of the positive values.
- We have the following relation:

$$
\mathrm{Q}[i][s]= \begin{cases}x_{1}==s & \text { if } i=1 \\ \text { false } & \text { if } s<A \text { or } s>B \\ \mathrm{Q}[i-1][s] \text { or } x_{i}==s & \text { otherwise } \\ \text { or } \mathrm{Q}[i-1]\left[s-x_{i}\right] & \end{cases}
$$

Algorithm

- Let A be the sum of the negative values and B the sum of the positive values.
- We have the following relation:

$$
\mathrm{Q}[i][s]= \begin{cases}x_{1}==s & \text { if } i=1 \\ \text { false } & \text { if } s<A \text { or } s>B \\ \mathrm{Q}[i-1][s] \text { or } x_{i}==s & \text { otherwise } \\ \text { or } \mathrm{Q}[i-1]\left[s-x_{i}\right] & \end{cases}
$$

- Algorithm runs in $\mathrm{O}(n(B-A))$ time (pseudo-polynomial).

Code

Dynamic
Programming
Robin Visser

Background
Examples
Fibonacci
Coin counting
Longest
common
subsequence
Subset sum
Summary

Pseudocode:

```
Q[1][x1] = True
for i from 2 to n:
    for s from A to B:
        if Q[i-1][s] or Q[i-1][s-xi] or xi==s:
        Q[i][s] = True
return Q[n] [S]
```


Code

Pseudocode:

$$
\begin{aligned}
& Q[1][\mathrm{x} 1]=\text { True } \\
& \text { for i from } 2 \text { to } \mathrm{n} \text { : } \\
& \text { for } \mathrm{s} \text { from } A \text { to } B \text { : } \\
& \text { if } Q[i-1][s] \text { or } Q[i-1][s-x i] \text { or } x i==s \text { : } \\
& \quad Q[i][s]=\text { True } \\
& \text { return } Q[n][S]
\end{aligned}
$$

- To count number of subsets that sum to S, just replace boolean values with integer values and add instead of or.

Code

Pseudocode:

$$
\begin{aligned}
& Q[1][\mathrm{x} 1]=\text { True } \\
& \text { for i from } 2 \text { to } \mathrm{n} \text { : } \\
& \text { for } \mathrm{s} \text { from } A \text { to } B \text { : } \\
& \text { if } Q[i-1][s] \text { or } Q[i-1][s-x i] \text { or } x i==s \text { : } \\
& \quad Q[i][s]=\text { True } \\
& \text { return } Q[n][S]
\end{aligned}
$$

- To count number of subsets that sum to S, just replace boolean values with integer values and add instead of or.
- Again, backtracking can be used to recreate the actual subset.

Summary

- Dynamic programming is a widely adaptable technique that can be used in many different situations.

Summary

- Dynamic programming is a widely adaptable technique that can be used in many different situations.
- Whenever different states exist and previous states can be used to construct bigger ones, it's probably DP.

Summary

- Dynamic programming is a widely adaptable technique that can be used in many different situations.
- Whenever different states exist and previous states can be used to construct bigger ones, it's probably DP.
- There can often be several different ways to do a DP with differing time complexities, so even if you have a valid solution, always try to find optimisations.

